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1 The balloon model

We assume no capillary recruitment, so that blood volume changes occur pri-
marily in the venous compartment. The vascular bed within a small volume
of tissue is modeled as an expandable venous compartment that is fed by the
output of the capillary bed. The volume flow rate (ml/s) into the tissue, Fin(t),
is an assumed function of time that drives the system. The volume flow rate
out of the system, Fou (i), is assumed to depend primarily on the pressure in
the venous compartment.

We assume that Fpyu(t) is a function of the venous volume, V. The rate of
change of the volume of the balloon is the difference between Fig(t) and Fou(t):
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We then consider the total deoxyhemoglobin, Q(t), in the tissue element. We
neglect the capillary contribution and assume that all of the deoxyhemoglobin
is in the venous compartment. The rate of entry ol deoxyhemoglobin into the
venous compartment is Fi, EC, where E is the net oxygen extraction from the
blood as it passes through the capillary bed, and C, is the arterial O concen-
tration (assumed to be due to a fully oxygenated hemoglobin concentration).
On the other side, the clearence rate of deoxyhemoglobin from tissue is Fogu
the average venous concentration, Q(i)/V (t) so that
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By scaling each of these variables with their value at rest (t = 0) these
equations can be written in terms of the dimensionless variables ¢(t) = Q(t)/Qo,
U(t) = V(t)/I/ ) fu\(!;) = Fin(t')/FOw and fDuL(U) = FOI]L(V)/FO:
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where @, is the resting deoxyhemoglobin content, V; is the resting volume,
Fy is the resting flow, 70 = Vo/Fp is the mean transit time through the venous
compartment at rest, Ey is the resting net extraction of Oz by the capillary bed,
and ¢(0) = v(0) = fin(o) = fou(v(0)) = 1.

Note that 7o simply sets the time scale for the changes and that the only other
parameter that appears explicitely is £y. However, two functions remain to be
specified: E(t) and fou.(v). We argued elsewhere that a nonlinear expression
for E(f) is a reasonable approximation for a wide range of transport conditions:

E(f)=1-(1-E)Y¥

The formulae of E(fi,(t)} is substituted for E(t) in the balloon model in
the 2 Egs. above. Different functional forms of fou(v) correspond to different.
pressure/volume curves for the venous balloon. For the calculations, Buxton et
al. modeled fou (v) as a sum of a linear component and a power law.

2 Computations with the balloon model

As “input” driving function, we used a trapezoidal function with raise time of
4...6 s and variable duration. The resting net extraction of Oz by the capillary
bed was set to Ey = 0.4. The timescale was given by 75 = 2s. As extraction of
0, we used E(t) = 1 — (1 — Eg)Y//m®). The response flow out of the capillary
bed was assumed as a linear, respectively non-linear function of time (cf. Fig. 1
and Fig. 2. in the Buxton article).

The requested values are:

[Deoxy-Hb] The total seoxyhemoglobin content is given by the variable g(t} =

Q(t)/Qo-
[Volumen] The total volumen is given by the variable v(t) = V(t)/Vo

[Flow] fin is passed to the model; fou(t) = fou(v(t)) is also passed to the
model.

[BOLD] The BOLD signal is given by

A
Wb+ k- D)+ k(1 - v)

where k; = 2.8, kp = 2 and k3 = 0.6 for Bp = 1.5T, TE = 40ms
[CMRO2| CMRO2 = E CBF (Oz)ar
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1 Abstract

Focus of the work is the haemodynamic response consisting of CBF and blood
oxygenation. Different models are examined as there are

1. BOLD as a function of changes in cerebral oxygen fraction (E) and cerebral
blood volume (CBV)

2. The balloon model proposed to describe the transient dynamics of CBV
and deoxyhaemoglobin (HB) and how they affect the BOLD signal

3. Neurovascular coupling, relating the responses in CBF and cerebral metabolic

rate of oxygen (CMRO2) to the neural activity response
4. A simple model for the temporal nonlinearity of the neural response itsell

These models are integrated into a mathematical framework describing the
steps linking the stimulus to the measured BOLD and CBF responses.

Experimental results examining transient features of the BOLD response
(post-stimulus undershoot and initial dip), nonlinearities of the haemodynamic
response, and the role of the physiologic baseline state in altering the BOLD sig-
nal are discussed in the contect of the proposed models. Quantitative modeling
of the haemodynamic response, when combined with experimental data mea-
suring the BOLD and CBF responses, makes possible a more specific and quan-
titative assessment of brain physiology than is possible with standard BOLD
imaging alone.

2 Introduction

Changes in the metabolic state of the brain affect the local MR signal and pro-
vide an intrinsic mechanism for detecting brain activation (Kwong et al. 1992,
Ogawa et al. 1990). The origin of the effect is the change of magnetic suscepti-
bility in the presence of deoxyhaemoglobin which leads to a slight alteration of
the local MR signal. Following increased neural activity of the brain, the local
cerebral blood flow (CBF) increases much more than the cerebral metabolic
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rate of oxygen (CMRO2), and as a result, E' decreases with activation. Because
the local blood is more oxygenated, there is less deoxyhaemoglobin present, the
magnetic field distortions are reduced, and the local MR signal increases slihtly.
This is the BOLD signal change, which is used in most fMRI applications.

In such MRI experiments, the BOLD signal does not directly measure the
neuronal activity itself. Instead, the BOLD eflect is sensitive to changes in CBF,
CMRO2, and cerebral blood volume (CBV), the set of physiological responses
that are referred to as the haemodynamic response to activation. A critical
goal for interpreting fMRI data is to understand the underlying link between
neuronal activity and the naemodynamic response.

Our goal is to develop a mathematical description of the translation from an
applied stimulus pattern to the measured BOLD signal.

When the BOLD change is combined with other MRI methods for measuring
CBF directly, it becomes possible to untangle some of the factors that influence
the BOLD effect, enabeling a much more detailed modeling of the physiological
processes. Arterial spin labeling (ASL) techniques provide a means ol measuring
both the BOLD signal and CBF simultaneously. The image difference, control
minus tag, ias direct reflection how much blood was delivered to each voxel and
so provides a map of CBF (see Buxton 2002 for a review).

When all factor are taken into account. ASL offers a powerful probe of
brain physiology. With a dual echo acquisition, with subsequent acquisitions
alternating betwee tag and control, the data can be processed to yield essentially
independent measurements of the local CBF and BOLD time series. In addition,
newer MRI techinques promise to provide measurements of CBV over time as
well (Lu et al. 2003). In the following discussion of models of the haemodynamic
response, we will assume that the measurable quantities are time series of CBF
and BOLD, and that under some circumstances CBV can be measured as well.

Four models are considered, which when combined provide a model of the
full path from the temporal stimulus pattern to a measured CBF response and a
measured BOLD response. The models treat (1) the BOLD signal as a function
of changes in E and CBV; (2) the ballon model, proposed to describe the tran-
sient dynamics of CBV and deoxyhaemoglobin and how they affect the BOLD
signal; (3) neurovascular coupling, relating the responses in CBF and CMRO2
to the neural activity response; and (4) a simple model for the temporal nonlin-
earity of the neural response itself. Recent experimental findings on the linearity
of the BOLD response and the effect. of the baseline physiological state on the
BOLD response are considered in the light of these models.

3 Experimental characterization of the haemo-
dynamic response

Based on numerous experimental studies of the BOLD and CBF responses to
brain activation, the following are the key findings that motivate the modeling:

1. CBF increases much more than CMRO2
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2. The CBF and BOLD responses to even a brief stimulus are delayed
3. A post-stimulus undershoot of the BOLD signal is common
4. Initial dip of the BOLD signal

. The BOLD response typically exhibits a temporal nonlinearity

[l

6. Nonlinearity has been reported as a “refractory period”

. Baseline CBF can have a strong effect on the magnitude of the BOLD
response

4 Definition of dynamic variables

The stimulus pattern (1) s(t) drives the neural response N(t); (2) N(¢) drives
the CBF response f(¢) and the CMRO2 response m(t); (3) f(t) and m(t drive
the balloon model to produce the CBV response v(t) and the total deoxy-
haemoglobin response ¢(t); and (4) ¢(t) and v(¢) combine to produce the BOLD
signal. Upper case variables refer to absolute quantities, whereas lower case
variables are the same quantity normalized to its baseline value. At baseline,
f=m=gqg=v=1, and E = Ep. The neural response is defined such that
N(t) = 1 on the plateau of a sustained stimulus when no adaption effects are
operating.

For the calculations shown here, we are particularly interested in transient
features and nonlinearities of the BOLD response. To emphasize these effects,
we assume simple forms for scaling the stimulus and the neural response. The
stimulus is considered to be a briel event (e.g. one reversal of a visually presented
checkerboard) and these events can be presented in any pattern, including direct
concatenation to produce a sustained stimulus (e.g. a flickering checkerboard).
The stimulus pattern s(t) is then a time series of oenes and zeros defining when
events occured. The neural response is defined such that N(f) = 1 on the
plateau of a sustained stimulus when no adaption eflects are operating.

5 physiological relationship

The CBF increase associated with neural activity is triggered by a relaxation
of the smooth muscle in the wall of the arterioles. By relaxing they quickly
decrease vascular resistence and thereby the pressure drop across these vessels
also decreases, thereby raising the pressure in the capillaries and veins. These
vessels may also expand due to the increased pressure, further increasing the
CBV. Experimental studies have indicated that the steady-state relationship
between CBF and CBV can be described by a power-law

v.= f<
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where the exponent is approximately e = 0.4. This empirical relationship
applies to the entire blood volume and is often used in modeling the BOLD
effect.

At steady state, CBF and CMRO2 are related to each other by the arterial
oxygen concentration and the net oxygen extraction fraction E:

CMRO2 = £ - C, - CBF

m= —=
Eo /
The local oxygenation of the venous blood depends directly on E.
For modest changes around an awake baseline state, experiments suggest
that the relationshi between CBF and CMRO?2 changes can be characterized as
linear with a slope n defined as the fractional change in CMRO2

_ ACBF/CBF,
~ ACMRO2/CMRQO2
fi=1

m—1

n

The fact that n > 1, so that E decreases with activation, is the physiological
source of the BOLD effect, and this was originally described as an uncoupling
of CBF and CMRO2 in the seminal work of Fox and Raichle (1986). However, a
promising alternative explanation developed over the last few years is the oxygen
limitation model (Buxton 2002). By this model, the drop in E with activation
plays a functional role rather than serving as a marker of an uncoupling. The key
idea of this model is to think of the Os Hux down a diffusion gradient from the
mean capillary value to the mean value in mitochondria. To increase the net flux
(ie. increase CMRO?2), the gradient must be increased. If ther is no capillary
recruitment, so the O, source cannot be brought closer to the mitochondria, and
the mean mitochondrial pO; is very low, the only way to increase the Oy flux
is to raise the average capillary pOa. The average capillary pO; lies somewhere
between the venous and the arterial pOs values, and because the arterial pO2
is fixed, the only local control available is to raise the venous pOz. And raising
venous pO; requires a reduction of the oxygen extraction fraction E. In this
way, the decrease in F is necessary to increase the O, diffusin gradient from
capillaries to mitochondria. For the calculation in this paper, we will simply
use the empirical relationships presented above.

6 Modeling the BOLD effect

Generally, two sources of signal changes must be modeled: The intravascular
and the extravascular signal changes. Although the intrinsic intravascular signal
is much less than the extravascular signal, the sensitivity of the intravascular
signal to the oxygenation of blood is much greater. The result is that the
intravascular contribution likely accounts for half or more of the signal change



observed at 1.5 T. The total deoxyhaemoglobin content could change either by
changing the volume of the venous blood, so the role of volume changes must
be included. Finally, for the smallest vessels, diffusion effects can be important.

Thus modeling the BOLD effect depends not only on the biophysical models,
for how intravascular susceptibility differences alter the signal, but also physi-
ological models for how CBF, CBV, and CMRO2 change with activation. The
relative changes in CBF and CMRO2 determine the level of oxygenation of the
blood, and the CBV determines the total amount of blood (and thus the total
deoxyhaemoglobin present in the voxel).

7 Magnetic Susceptibility Effects and the MR
Signal

Ogawa et al. (1993) introduced a biophysical model of the BOLD effect and
Davies et al. (1998) extended this model based on reasonable approximations
and the results of numerical simulations. Because of its simplicity, the model has
proven to be a useful tool for understanding the BOLD effect in a quantitative
way and has provided a method for calibrating the BOLD signal and measuring
CMRO2 changes.

The MR signal decay for GRE is given by

§= Smux 2 O\I)(—TE d R;)

where R5 = R5(0) + R. R is the quantity that changes, otherwise stated as
R = AR} = Rae, — Ro.

With
So = exp(—R;(0)TE)
S:LCL = G\P((*RE (0) + R)TE)
we get
Sact = So  _ exp((=R3(0) + R)TE) — exp(—R;(0)TE)
So SO

il

exp(—RTE) - 1=~ ARTE

The key question is: how does AR; depend on blood oxygenation and vol-
ume? The magnetic susceptibility difference can be accurately modeled as hav-
ing a linear dependence on the local deoxyhaemoglobin concentration in blood
and this quantity in turn can be expressed in terms of the change in the oxygen
extraction fraction E. To model the spread of phases, Davis et al. assumed a
power law R o< AB®. Numerical simulations (Boxerman et al., Ogawa et al.)
suggest that when diffusion is not important, 3 = 1, but that 8 = 2 gives a bet-
ter description around the smallest vessels when diffusion effects are important.
Numerical simulations for a mixture of vessels suggest that § = 1.5 is a good
approximation for 1.5 - 3 T, but that at higher fields, 8 should approach 1.
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In addition to the change in E with activation, a change in blood volume
also affects R. For example, even if the oxygenation of the blood did not change
but the venous blood increased, the total deoxyhemoglobin would be increased,
and we would expect this to in crease It and decrease the MR signal. Numerical
simulations suggest that a resonable approximation is to assume that R o Vi
the venous blood volume. Combining these dependencies, the contribution of
deoxyhemoglobin to the relaxation rate is modeled as

Rx VEP

8 The BOLD signal change

Following Davies et al. these ideas can be combined to model the MR signal in
terms of blood voulme (V') and oxygen extraction fraction (E):

aS 4 |y Vaa (Baa)®
Sy Vo ( Ey )

A decrease of either of the physiological quantitites (V or £) will decrease
the local deoxyhemoglobin concnetration and so increase the MR signal. A is
the maximum BOLD signal change that could occur, corresponding to complete
removal of deoxyhemoglobin from the voxel. The parameter § should be pri-
marily be ficld dependent, it is not a function of brain region. A however, is a
local parameter and may vary across dillerent voxels in the brain.

Note that 3 is proportional to the value of It at rest, the relaxation rate
produced by deoxyhemoglobin in the baseline state. The more deoxyhemoglobin
is present at rest, the larger the BOLD signal change will be for the same
fractional change in V' and E with activation.

[n our notation, with dynamic variables normalized to their baseline values
and assuming Eqn. 1 is accurate, the basic BOLD signal equation is

. A (1= f2PmP)
So

Although, Eqn. 8 is a very useful model, the reader should bear in mind
that it does not necessarily describe all of the effects that may contribute to the
measured signal change in an activation experiment. Specifically, small direct
effects of CBF and CBV changes on the MR signal that are independent of the
BOLD effect are likely present in real data. In most applications, these eflects
are thought to be small compared to the BOLD effect, especially at higher
magnetic fields, but they may not be negligible.
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9 Calibrated BOLD approach for measuring CMRO2

changes

Measuring both the BOLD signal change with activation and the CBF change
with activation, and analyzing these data in terms of the BOLD signal model, it
is possible to estimate the change in the CMRO2. The essential problem in ap-
plying Eq. 8 to measured data is the uncertainty about the local value of A. IfA
is known, then m can be determined from Eqn. 8 when [ and AS are measured
with an ASL experiment. To measure A, Davies et al. and others have ex-
ploited a well-established — but poorly understood - physiological phenomenon:
breathing CO2 significantly raises CBF but has little or no effect on CMROZ2.
This provides a way to calibrate the BOLD experiment with a hypercapnia ex-
periment. By measuring f and AS in response to breathing CO2 combined
with the assumption that CMRO2 remains constant (m = 1) the value of A is
calculated from Eqn. 8. The same equation is applied again to the measured
activation signal in that region, and with a known value ol A, the value of m
with activation can be calculated. Because of the assumptions involved (Eqn. 1)
this is essentially a steady-state measurement of CMRO2 change from baseline.
However, if both CBF and CBV time courses are measured independently, a
dynamic curve for CMRO2 can be calculated (Mandeville et al. 1999a).

10 Alternative Forms for the BOLD signal model

An alternate form of the BOLD signal equation was proposed to model the
dynamics of the BOLD eflect in context of the balloon model. The derivation of
this model is based on separate estimates of the intravascular and extravascular
signal changes. In this way, the model can be used to analyzeexperiments in
which flow-nulling bipolar gradients are applied to destroy the signal of moving
blood., and thus eliminate the intravascular signal changes from the BOLD effect.
The key physiological variables are the total deoxyhemoglobin (q) and the blood
volume (v), both normalized to their values at rest. In this model, the BOLD
signal change is written as:
22 % Volaa(1 - g)a(1 - v)

where Vj is the resting venous blood volume fraction (e.g. 0.03) and the
dimensionless parameters a; and a; depend on several experimental and physi-
ological parameters. The values estimated by Obata et al. (2004) for a magnetic
field of 1.5 T with TE = 40 ms, and Eq = 0.4 are a; = 3.4 and az = 1.0.

Egs. 8 and 9 are framed in terms o different variables, but they are approxi-
mately equivalent expressions for the BOLD signal change. Fig. 2 shows curves
of the BOLD response as a function of the CBF change calculated with the two
models with A = 0.075 in Eqn. 8 and V5 = 0.03 in Eqn. 9 (other parameters
were standard values listed in Table 1). These curves were calculated for steady
state changes using the relation q/v = E/Fj to relate the variables of the two
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equations. In their calibrated BOLD experience in human visual cortex, Davis
et al. found an average value of A = 0.097, and 3% is a resonable estimate fo the
venous blood volume fraction. This suggests that the theoretical assumptions
that led to the estimates of a; and ag in Eqn. 9 are in resonable agreement with
experimental data, and the similarity of the two curves illustrates the consis-
tency of the two models.

Eqn. 8 is useful for calibrated BOLD studies, because it explicitely includes
CBF, a measurable quantity. On the other hand, Eqn. 9 deals explicitely with
the variables of the balloon model, and so is more convenient for most of the
modeling calculations described in this paper.

Based on Eqn. 9 we can look at the BOLD signal as a contour plot in the
gq/v plane, because the dynamic variables g and v determine the signal. Fig. 2B
shows such a plot, along with a curve of constant oxyhemoglobin (a line of con-
stant deoxyheomoglobin is vertical). Note that the BOLD signal does not purely
follow total deoxyhemoglobin or oxyhemoglobin. Because of this, it is possible
for the BOLD signal to increase despite an increase of deoxyhemoglobin. As
an example, consider a scenario in which the increase in CBV and the decrease
in E happen to combine to produce no change in total deoxyhemoglobin, so
that ¢ = 1 and v > 1. In this case, the field distortions outside the vessel will
be similar, but the concentration of deoxyhemoglobin in the blood must have
decreased. The intravascular signal depends strongly on the deoxyhemoglobin
concentration, and so this component of the signal will increase, The result is a
BOLD signal increase with no change in deoxyhemoglobin. This subtlety of the
BOLD signal may become important n comparing IMRI data with optical or
near-infrared results that are sensitive to oxyhemoglobin and deoxyhemoglobin:
there is no one-to-one correspondence between the BOLD signal and the total
deoxyhemoglobin (Hess et al. 2000).

Analyzing the bold signal in the g/v plane is also useful for visualizing the
physiological dynamics accompanying brain activation. Fig. 2B shows a simle
trajectory that would result for a gradual CBF increase of 50% with n = 3,
if the physiological quantities all followed their steady state relationships (Egs.
1-3) at all times. The interesting dynamics develops when the physiological
variables transiently depart from these relationships in the transition to a new
steady-state, and then the trajectories become rather more complicated. The
following model attempts to describe these dynamics.

11 The balloon model

The balloon model was motivated by the observation in an animal study (Man-
deville et al. 1998) that CBV returned to baseline more slowly than CBF after
the end of the stimulus, and the idea that this effect may explain the post-
stimulus undershoot of the BOLD signal that often is observed. A similar wind-
kessel model was proposed by Mandelville et al. (1999b) to embody the same
concept and provide a biomechanical mechanism for a delayed CBV return to
baseline. The balloon model has been refined and compared with experimental



data (...), and some errors in the original parameter estimates were recently
corrected (Obata et al 2004). The model is capable of producing post-stimulus
undershoots that match well with experimental data.

However, the central promise of the model , that the undershoot occurs
when CBV returns slowly to baseline, ahs not been definitively established and
focussed experimental tests of theis quastion are needed (e.g. Mandeville et al.
1999a, Toronov et al. 2003).

The central idea of the model is that the venous compartement is treated
as a distensible balloon. Thze inflow to the ballonn fi, is the central blood
flow (f in our current notation), while the outflow from the balloon fou. 1s an
increasing function of the balloon volume. The two dynamical variables are the
total deoxyhemoglobin g(t) and the volume of the balloon v(t). The equations of
the balloon model represent mass conservation for blood and deoxyhemoglobin
as they pass throught the venous balloon:

1 {L,’(»_-ytpc‘haﬂi_c ind
~ dqg 1 i E(t) B @ o
VIR o s Ve ST dt TMTT Eq U(E) SR
~ dv 1 ,
& t) = u Wt
dt e [F(t) = fow(v,t)]

The net extraction fraction of oxygen is £(t), and the resting value is typ-
ically Ep = 0.4. The time dimension of the equations is scaled by the time
constant TyTT, the mean transit time through the balloon at rest. For a cere-
bral blood fAow of 60 ml min~! 100 ml~! of tissue (equivalent to a rate constant
of 0.01 s71) and a resting venous blood volume fraction of ¥y = 0.03, the mean
transit time is TyTT = 38.

The driving function of. the system is the quantity f(¢t)£(t). In the original
formulation of the balloon model, the extraction fraction was modeled as a fixed
function of the inflow f, a tight coupling of flow and oxygen metabolism. The
equations were generalized by Obata et al. (2004), treating E(t) as an indepen-
dent quantity to be able to explore the dynamics that result from uncoupling
of blood flow and oxygen metabolism. Note that the quantity fE/Eq is simply
the CMRO2 value normalized to its value at rest (m).

in the original formulation of the balloon model, the outflow was modeled as
a pure function of blood volume v. Steady State experiments, altering CBF with
inhaled CO2, found that the steady state relationship between CBF and total
blood volume was well described by an empirical power law (Eq. 1). However,
interesting dynamics occur, when the blood volume transiently lags behind the
steady state relationship, for example, due Lo viscoelaslic effects. In the origi-
nal discussion of the balloon model, the description of these transients was an
arbitrary mathematical form, chosen just to illustrate the type of effects that
could occur. However, that approach is not well-suited to data modeling. In
particular, it would be useful to have a simple model that could be tested again
multiple data sets, such as experiments varying the duration of the stimulus.

To that end, we proposed a simple model for these viscoclastic effects in
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which f,.. is treated as a function of the balloon volume and the rate of change
of that volume

d
fom.(v) = ’U% < p T—E

With this form, the balloon initially resists a change in volume, but even-
tually settles into a new steady state that conforms with the power-law mode!
in Eqn. 1. THe time constant T controls how long this transient adjustment
requires. A nonzero value for 7 produces hysteresis in the curve fou(v), so that
the system follows a different curve on inflation (7,) and deflation (7).

For a specific driving function f(£) E(t), and values for the parameters TyTT,
Ey, o, 7y and 7_ Eqgs. 10 and 11 can be integrated numerically to yield dynamic
time courses for g(¢) and v(t). These dynamic physiological quantities can then
be combined with the BOLD signal model (Eqn. 9) to generate MR signal curves.
Fig. 3 shows balloon model curves for a simple, smooth trapezoidal form for f(t)
and a fixed CBF/CMRO? coupling parameter n = 3. A nonzero value for 7
creates an initial overshoot of the BOLD signal, and a nonzero value for 7_ cre-
ates a poststimulus undershoot. These curves show that quiet different BOLD
responses can result from the same underlying CBF and CMRO?2 response.

12 Neurovascular coupling

We do not currently have a quantitative understanding of the mechanisms that
couple neural activity to CBF and CMRO2 changes. In fact, ther is no consen-
sus on exactly which aspect of neural activity drives the hemodynamic response.
Experimental studies comparing electrophysiological measurements with BOLD
and CBF changes have found that the hemodynamic response correlate bet-
ter with local mean-field potential, rather than local spiking rates, suggesting
that the hemodynamic response is dominantly driven by input synaptic activity
rather than output spiking activity. Theoretical analysis of the energy budget
for neuronal signaling provide some support for that picture as well. The pri-
mary expenditure of energy is required to restore the ion gradients degraded
during neural activation. The intracellular-extracellular sodium gradient is far
from equilibrium, so pumping sodium against this gradient is a strong uphill
reaction in a thermodynamic sense. For this reason, the most costly effect for
neural activity is likely to be excitatory synaptic activity in which glutamate
opens sodium channels.

Indeed, the action of the sodium-potassium pump is thought to consume
a large fraction of the ATP energy budget in the brain. In a recent animal
experiment, blocking voltage-dependent sodium channels substantially reduced
the CBF response, supportin the idea that the dominant energy consuming
process in the brain is recovery from excitatory activity. Finally, there is some
evidence that inhibitory activity does not elicit a measurable BOLD response.

Friston et al. introduced a simple neurovascular coupling model in which the
rate of change of CBF is proportional to the concentration of a vasoactive agent

10



released by neural activity. Using this model, they showed that an observed set
of nonlinearities modeled with Volterra Kernels could be well described with
this more physiological mocel. This model was also used to explore the effects
of nonlinearity in different experimental designs.

One of the goals of modeling the hemodynamic response is to un derstand the
origins of the nonlinearities of the response, and for that purpose, it is useful to
have a model that includes a nonlinear transformation from the stimulus pattern
s(t) to the CBF response f(¢). Such a nonlinearity could arise in the stepp from
s(t) to the neural response N(t), as, for example, in adaption. In addition, the
step from the neural activity to CBF response could be nonlinear, for example,
through a ceiling effect on CBF change. Given our poor understanding of the
mechanisms of neurovascular coupling, we take here a simplke approach and
assume that the nonlinear step is entirely in the transformation from s(t) to
N(t) and in the next section we introduce a simple maodel for this process that
includes adaption. We then assume that both CBF and CMRO2 are linear
convolutionsof an impulse response function i(£) with the appropriate measure
of neural activity N (¢).

A plausible shape for h(¢) is a gamma-variate function with a full-width at
half maximum (FWHM) of about 4 s. For the calculations, here we used the
form

1 { k
h(t) = m (:") exp(—t/7h)

T,

with k = 3. For the calculation in this paper we also add a delay of this response

(typically about 1 s) to model the observed lag of the hemodynamic response.
The shape h(t) is then scaled to provide the desired amplitude and duration

of the impulse response. For this shape and a desired FWHM of 7/, the time

constant in Egn. 12 is given by the empirical expression 7, = 0.2427;. The CBF

and CMRO? responses to activation are then

~

—

=

)
I

L+ (i = h(t = dts) = N(t)
m(t) = 1+ (my—1)g(t—2dty)=N(t)

The symbol = denotes convolution. The parameter f, scales the response
shape to the appropriate amplitude and represents the normalized flow increase
on the plateau of the CBF response to a sustained neural activity with unit
amplitude. For example, if N(t) is a 30 s block with amplitude 1, and the
model parameters are f; = 1.5 and 7, = 4s, the CBF response is a smoothed
version of the block due to the 4-s wide smothing kernel, and on the plateau
CBF is increased by 50%. The parameter 8ty is the delay after the start of the
stimulus before the CBF response begins.

We model the CMRO2 response in Eqn. 13 as an independent convolution
with potentially independent amplitude, width, and delay defined by g(t). In
the calculation here, we assume a coupled response such that the amplitude
of the CMRO2 impulse response is given by (m; — 1) = (f; — 1)/n, and the
width is the same. In this way, the steady state response is constrained to
follow the empirical relationship in Eqn. 3. However, by introducing a delay
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dt = 6ly — bt of the CBF response relative to the CMRO2 repsonse, we can
introduce interesting dynamics such as an initial dip of the BOLD response. This
approach is analogous to the balloon model, where the model is constrainted
to follow the physioclogical relationship in Eqn. 1 at steady state, but allows
substantial range for transient responses.

Fig. 4 illustrates the type of transient features that can result from com-
bining the balloon model with the independent convolution model. The figure
show different dynamic responses of CBF, CMRO2, and CBYV to the same 20-s
uniform block of neural ectivity. In these calculations, the responses f(t) and
m(t) calculated from the independent convolutions were used as input to the
balloon model to calculate v(t) and g(t). The first pannel shows the response
when the viscoelastic time constants of the balloon model are zero, there is no
delay between f(t) and m(t). In the second panel, 7_ was increased to 20 s, and
in the third panel, the impulse response for CBF was delayed by ¢ = 1srelative
to the CMRO2 response. The BOLD response for the last combination shows
both an initial dip and a poststimulus undershoot. The physiological dynamics
is also shown as a trajectory in the /v plane on the right side of Fig. 4, and the
BOLD signal is a one-dimensional projection of this two-dimensional trajectory.

13 Modeling the neural response

As discussed in the previous section, the approach we have adopted is to model
the CBF and CMRO?2 responses as linear convolutions with the neural activity
N(t), and uses a model for the step from the stimulus s(¢) to N(¢) that includes
the possibility for adaption. We chose a simple inhibitory feedback system, in
which the neural response N (i) is treated as the difference between an excitatory
input s(¢) and an inhibitory input {(¢). The inhibitory input [(t) is driven by
the neural response N () with a gain factor x and a time constant 7;. The set
of equations is

N(t) = s(t)—1I(L)
dI kN (t) = I(t)
dt T1

From these equations, the neural response to a sustained stimulus is an initial
peak [ollowed by decay to a lower plateau level, with the difference between
the peak and plateau valued determined by x. As written, these equations are
linear, and the initial peak of the response would be balanced by a dip after
the end of the stimulus, and such a post-undershoot of the neural response has
been observed. We introduce a nonlinear component as well as the possibility
of a post-stimulus neural undershoot, by introducing a baseline nerual activity
Np, and the requirement that the neural repsonse is a positive quantity (i.e.
if the calculated quantity Ng + N(¢) < 0, it is replaced by zero). Then il the
resting stimulus level is Ny = 0, there is no dip following the end of the stimulus.
This is the adaption pattern originally proposed by Boynton et al. to describe
the observed nonlinearities of the BOLD response in the visual cortex. On the
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other hand, if Ny > 0, there will be a post-stimulus undershoot of the neural
response. In addition to diminishing the response to a sustained stimulus, this
model aslo introduces a “refractory” effect. If two events are presented close
together (within 71) of each other, then the net responseof both events will have
less than twice the area of the response to a single event.

This model provides a simple form for introducing a nonlinearitythat can
be applied to any stimulus pattern: the amplitude of this nonlinear effect is
governed by s and the duration of the “refractory” period is determined by .
Fig. 5 shows an example that includes both a two pulse inhibition experiment
and a sustained stimulus.

13



	image00001
	image00002
	image00003
	image00004
	image00005
	image00006
	image00007
	image00008
	image00009
	image00010
	image00011
	image00012
	image00013
	image00014
	image00015

